Python module
attention_with_rope
An opaque KV Cache optimized attention mechanism with Rope.
AttentionWithRope
class max.nn.attention.attention_with_rope.AttentionWithRope(*, rope, sharding_strategy=None, num_attention_heads, num_key_value_heads, hidden_size, kv_params, devices=None, dtype=float32, linear_cls=<class 'max.nn.linear.Linear'>, stacked_qkv=False, scale=None, has_bias=False, float8_config=None, clip_qkv=None, use_qk_norm=False, rms_norm_eps=1e-06)
Implementation of attention that uses Rotary Position Embedding (RoPE).
Initializes the attention layer.
-
Parameters:
-
- rope (RotaryEmbedding) – The rope layer to borrow the freqs_cis value from.
- sharding_strategy (ShardingStrategy | None) – Optional initial sharding strategy.
- num_attention_heads (int) – The number of attention heads.
- num_key_value_heads (int) – Number of key/value heads.
- hidden_size (int) – The dimension of the hidden states.
- kv_params (KVCacheParams) – KV Cache params, including number of kv heads, head dim, and dtype.
- dtype (DType) – DType of the QKV and output projection weights.
- devices (Sequence[DeviceRef] | None) – Device(s) on which to place the weights and run the computation. If multiple are provided, the first device is used for weight placement here.
- linear_cls (Callable[..., Linear]) – Linear class to use for projections.
- stacked_qkv (bool) – Whether Q/K/V weights are stacked in a single Weight.
- scale (float | None) – Optional attention scale; defaults to sqrt(1/head_dim).
- has_bias (bool) – Whether Q/K/V have bias (stacked_qkv forbids bias).
- float8_config (Float8Config | None) – Optional Float8 config (dynamic or static).
- clip_qkv (float | None) – If provided, clamp Q/K/V weights to [-clip_qkv, clip_qkv].
- use_qk_norm (bool) – Whether to use RMSNorm on Q/K.
- rms_norm_eps (float) – Value to use for numerical stability in RMSNorm.
qkv_input_scale
property qkv_input_scale: TensorValue | None
The max of q, k, and v scale input vectors.
qkv_weight_scale
property qkv_weight_scale: TensorValue
The max of q, k, and v scale weight vectors.
rope
rope: RotaryEmbedding
shard()
shard(devices)
Create sharded views across devices (tensor-parallel).
Returns one AttentionWithRope per device with appropriately sliced weights.
-
Parameters:
-
Return type:
sharding_strategy
property sharding_strategy: ShardingStrategy | None
Get the Module sharding strategy.
wqkv
property wqkv: TensorValue
The concatenation of q, k, and v weight vectors.
wqkv_bias
property wqkv_bias: TensorValue | None
The concatenation of q, k, and v bias weight vectors.
AttentionWithRopeNoOpaque
class max.nn.attention.attention_with_rope.AttentionWithRopeNoOpaque(*, rope, num_attention_heads, num_key_value_heads, hidden_size, kv_params, devices=None, dtype=float32, linear_cls=<class 'max.nn.linear.Linear'>, scale=None)
Attention with RoPE without opaque KV cache.
- Assumes:
- no float8
- no stacked qkv
- no bias
- no clip_qkv
- no float8_config
Initializes the attention layer.
-
Parameters:
-
- rope (RotaryEmbedding) – The rope layer to borrow the freqs_cis value from.
- num_attention_heads (int) – The number of attention heads.
- num_key_value_heads (int) – Number of key/value heads.
- hidden_size (int) – The dimension of the hidden states.
- kv_params (KVCacheParams) – KV Cache params, including number of kv heads, head dim, and dtype.
- dtype (DType) – DType of the QKV and output projection weights.
- devices (Sequence[DeviceRef] | None) – Device(s) on which to place the weights and run the computation. If multiple are provided, the first device is used. Use TensorParallelAttentionWithRope to use all devices during attention computation.
- linear_cls (Callable[..., Linear]) – Linear class to use for the outputs dense layer.
- scale (float | None) – Value used to scale the results of the attention output.
rope
rope: RotaryEmbedding
AttentionWithRopeQKV
class max.nn.attention.attention_with_rope.AttentionWithRopeQKV(n_heads: 'int', kv_params: 'KVCacheParams', wq: 'TensorValueLike', wk: 'TensorValueLike', wv: 'TensorValueLike', wo: 'LinearV1', scale: 'float', rope: 'RotaryEmbedding')
-
Parameters:
-
- n_heads (int)
- kv_params (KVCacheParams)
- wq (Value[TensorType] | TensorValue | Shape | Dim | HasTensorValue | int | float | integer[Any] | floating[Any] | DLPackArray)
- wk (Value[TensorType] | TensorValue | Shape | Dim | HasTensorValue | int | float | integer[Any] | floating[Any] | DLPackArray)
- wv (Value[TensorType] | TensorValue | Shape | Dim | HasTensorValue | int | float | integer[Any] | floating[Any] | DLPackArray)
- wo (LinearV1)
- scale (float)
- rope (RotaryEmbedding)
rope
rope: RotaryEmbedding
AttentionWithRopeV1
class max.nn.attention.attention_with_rope.AttentionWithRopeV1(n_heads, kv_params, wqkv, wo, scale, rope, bias=None, perm_idx=None, quantization_config=None)
Implementation of attention that uses the rope frequency.
Deprecated: Use AttentionWithRope instead.
-
Parameters:
-
- n_heads (int)
- kv_params (KVCacheParams)
- wqkv (TensorValue)
- wo (LinearV1)
- scale (float)
- rope (RotaryEmbedding)
- bias (TensorValue | None)
- perm_idx (TensorValue | None)
- quantization_config (QuantizationConfig | None)
bias
bias: TensorValue | None = None
perm_idx
perm_idx: TensorValue | None = None
quantization_config
quantization_config: QuantizationConfig | None = None
rope
rope: RotaryEmbedding
DataParallelAttentionWithRope
class max.nn.attention.attention_with_rope.DataParallelAttentionWithRope(*, rope, num_attention_heads, num_key_value_heads, hidden_size, kv_params, devices=None, dtype=float32, linear_cls=<class 'max.nn.linear.Linear'>, stacked_qkv=False, scale=None, has_bias=False, float8_config=None, clip_qkv=None, use_qk_norm=False, rms_norm_eps=1e-06)
Data-parallel implementation of Attention with RoPE.
This replicates the attention module across devices and runs each replica on its local inputs (x, kv, freqs_cis, input_row_offsets). No collective ops are required; KV-cache remains local to each device.
Notes:
- Assumes the caller has already distributed xs, kv_collections, freqs_cis, and input_row_offsets so that index i corresponds to device i, with input_row_offsets[i] rebased to start at 0.
Initializes the attention layer.
-
Parameters:
-
- rope (RotaryEmbedding) – The rope layer to borrow the freqs_cis value from.
- sharding_strategy – Optional initial sharding strategy.
- num_attention_heads (int) – The number of attention heads.
- num_key_value_heads (int) – Number of key/value heads.
- hidden_size (int) – The dimension of the hidden states.
- kv_params (KVCacheParams) – KV Cache params, including number of kv heads, head dim, and dtype.
- dtype (DType) – DType of the QKV and output projection weights.
- devices (Sequence[DeviceRef] | None) – Device(s) on which to place the weights and run the computation. If multiple are provided, the first device is used for weight placement here.
- linear_cls (Callable[..., Linear]) – Linear class to use for projections.
- stacked_qkv (bool) – Whether Q/K/V weights are stacked in a single Weight.
- scale (float | None) – Optional attention scale; defaults to sqrt(1/head_dim).
- has_bias (bool) – Whether Q/K/V have bias (stacked_qkv forbids bias).
- float8_config (Float8Config | None) – Optional Float8 config (dynamic or static).
- clip_qkv (float | None) – If provided, clamp Q/K/V weights to [-clip_qkv, clip_qkv].
- use_qk_norm (bool) – Whether to use RMSNorm on Q/K.
- rms_norm_eps (float) – Value to use for numerical stability in RMSNorm.
GGUFQAttentionWithRope
class max.nn.attention.attention_with_rope.GGUFQAttentionWithRope(*, rope, num_attention_heads, num_key_value_heads, hidden_size, kv_params, dtype, quantization_encoding, devices=None, linear_cls=<class 'max.nn.linear.Linear'>, scale=None, has_bias=False, clip_qkv=None)
Implementation of attention with GGUF quantized weights.
Initializes the GGUF attention layer.
-
Parameters:
-
- rope (RotaryEmbedding) – The rope layer to borrow the freqs_cis value from.
- num_attention_heads (int) – The number of attention heads.
- num_key_value_heads (int) – Number of key/value heads.
- hidden_size (int) – The dimension of the hidden states.
- kv_params (KVCacheParams) – KV Cache params, including number of kv heads, head dim, and dtype.
- layer_idx – The layer number associated with this Attention block.
- dtype (DType) – DType of the weights, should always be uint8.
- devices (list[DeviceRef] | None) – Device(s) on which to place the weights and run the computation. If multiple are provided, the first device is used. Use TensorParallelAttentionWithRope to use all devices during attention computation.
- quantization_encoding (QuantizationEncoding) – Quantization encoding of the weights.
- linear_cls (Callable[..., Linear]) – Linear class to use for the outputs dense layer.
- scale (float | None) – Value used to scale the results of the attention output.
- has_bias (bool) – Whether to use an attention bias.
- clip_qkv (float | None) – If provided, the QKV weights are clamped between [-clip_qkv, clip_qkv]
rope
rope: RotaryEmbedding
wqkv
property wqkv: TensorValue
The concatenation of q, k, and v weight vectors.
wqkv_bias
property wqkv_bias: TensorValue | None
The concatenation of q, k, and v bias weight vectors.
GPTQAttentionWithRope
class max.nn.attention.attention_with_rope.GPTQAttentionWithRope(quantization_config, rope, num_attention_heads, num_key_value_heads, hidden_size, kv_params, devices=None, dtype=float32, scale=None, linear_cls=<class 'max.nn.linear.Linear'>)
Implementation of the GPTQ attention layer.
Initializes the attention layer.
-
Parameters:
-
- rope (RotaryEmbedding) – The rope layer to borrow the freqs_cis value from.
- sharding_strategy – Optional initial sharding strategy.
- num_attention_heads (int) – The number of attention heads.
- num_key_value_heads (int) – Number of key/value heads.
- hidden_size (int) – The dimension of the hidden states.
- kv_params (KVCacheParams) – KV Cache params, including number of kv heads, head dim, and dtype.
- dtype (DType) – DType of the QKV and output projection weights.
- devices (list[DeviceRef] | None) – Device(s) on which to place the weights and run the computation. If multiple are provided, the first device is used for weight placement here.
- linear_cls (Callable[..., Linear]) – Linear class to use for projections.
- stacked_qkv – Whether Q/K/V weights are stacked in a single Weight.
- scale (float | None) – Optional attention scale; defaults to sqrt(1/head_dim).
- has_bias – Whether Q/K/V have bias (stacked_qkv forbids bias).
- float8_config – Optional Float8 config (dynamic or static).
- clip_qkv – If provided, clamp Q/K/V weights to [-clip_qkv, clip_qkv].
- use_qk_norm – Whether to use RMSNorm on Q/K.
- rms_norm_eps – Value to use for numerical stability in RMSNorm.
- quantization_config (QuantizationConfig)
wqkv
property wqkv: TensorValue
The concatenation of q, k, and v weight vectors (packed + scales).
TensorParallelAttentionWithRope
class max.nn.attention.attention_with_rope.TensorParallelAttentionWithRope(*, rope, num_attention_heads, num_key_value_heads, hidden_size, kv_params, devices=None, dtype=float32, linear_cls=<class 'max.nn.linear.Linear'>, stacked_qkv=False, scale=None, has_bias=False, float8_config=None, clip_qkv=None, use_qk_norm=False, rms_norm_eps=1e-06)
Tensor-parallel wrapper that delegates sharding to the base module.
Initializes the distributed (tensor parallel) attention layer.
-
Parameters:
-
- rope (RotaryEmbedding) – The rope layer to borrow the freqs_cis value from.
- num_attention_heads (int) – The number of attention heads.
- num_key_value_heads (int) – Number of key/value heads.
- hidden_size (int) – The dimension of the hidden states.
- kv_params (KVCacheParams) – KV Cache params, including number of kv heads, head dim, and dtype.
- devices (Sequence[DeviceRef] | None) – Device(s) on which to place the weights and run the computation. Must provide at least 2 devices for tensor parallel attention.
- dtype (DType) – DType of the QKV and output projection weights.
- linear_cls (Callable[..., Linear]) – Linear class to use for the outputs dense layer.
- stacked_qkv (bool) – Whether the weights are stacked together.
- scale (float | None) – Value used to scale the results of the attention output.
- has_bias (bool) – Whether to use an attention bias.
- float8_config (Float8Config | None) – Float8 configuration for quantization.
- clip_qkv (float | None) – If provided, the QKV weights are clamped between [-clip_qkv, clip_qkv].
- use_qk_norm (bool) – Whether to use RMSNorm on Q/K.
- rms_norm_eps (float) – Value to use for numerical stability in RMSNorm.
distribute_value()
max.nn.attention.attention_with_rope.distribute_value(v, devices)
-
Parameters:
-
- v (TensorValue)
- devices (list[DeviceRef])
-
Return type:
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!