Python module
ragged_attention
An opaque KV Cache optimized vanilla attention mechanism, with Mask Variants provided inside the Kernel.
RaggedAttention
class max.nn.attention.ragged_attention.RaggedAttention(*, mask_variant: ~max.nn.kernels.MHAMaskVariant, num_attention_heads: int, num_key_value_heads: int, hidden_size: int, kv_params: ~max.nn.kv_cache.cache_params.KVCacheParams, layer_idx: int, devices: list[max.graph.type.DeviceRef] | None = None, dtype: ~max._core.dtype.DType = DType.float32, linear_cls: ~typing.Callable[[...], ~max.nn.linear.LinearV2] = <class 'max.nn.linear.LinearV2'>, stacked_qkv: bool = False, scale: float | None = None, has_bias: bool = False, clip_qkv: float | None = None)
Layer that computes the self attention score for ragged inputs.
Initializes the attention layer.
-
Parameters:
- rope – The rope layer to borrow the freq_cis value from.
- num_attention_heads – The number of attention heads.
- num_key_value_heads – Number of key/value heads.
- hidden_size – The dimension of the hidden states.
- kv_params – KV Cache Params, including the number of kv heads, the head dim, and data type.
- layer_idx – The layer number associated with this Attention block.
- dtype – DType of the
- devices – Device to place the weights and run the computation. If multiple are provided, the first device is used.
- linear_cls – Linear class to use for the outputs dense layer.
- stacked_qkv – Whether the weights are stacked together.
- scale – Value used to scale the results of the attention output.
- has_bias – Whether to use an attention bias.
- clip_qkv – If provided, the QKV weights are clamped between [-clip_qkv, clip_qkv]
wqkv
property wqkv*: TensorValue*
The concatenation of q, k, and v weight vectors.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!