Skip to main content

Python module

module_v3

Module implementation using eager tensors.

Embedding

class max.nn.module_v3.Embedding(vocab_size, *, dim=None, dims=None)

A vector embedding.

An embedding can be thought of as a lookup table for vectors by index. Given an input tensor of indices into the embedding, the result of the embedding lookup is a tensor of the same shape, but with each index replaced by the value of the vector in that location in the embedding table.

The common case for embeddings is a 1-dimensional embedding:

from max.dtype import DType
from max.experimental.tensor import Tensor
from max.nn.module_v3 import Embedding

embedding = Embedding(vocab_size=1000, dim=128)
tokens = Tensor.ones([10], dtype=DType.uint64)
embedded = embedding(tokens)
assert embedded.shape == [10, 128]

However they just as easily support multi-dimensional embeddings:

from max.dtype import DType
from max.experimental.tensor import Tensor
from max.nn.module_v3 import Embedding

embedding = Embedding(vocab_size=1000, dims=[16, 128])
tokens = Tensor.ones([10], dtype=DType.uint64)
embedded = embedding(tokens)
assert embedded.shape == [10, 16, 128]

Creates a randomly initialized embedding of the specified size.

Parameters:

  • vocab_size (DimLike) – The number of elements in the lookup table. Indices outside the range of [0, index_size) are illegal in the resulting embedding operation.
  • dim (DimLike | None) – The embedding dimension if there is exactly one. Equivalent to dims=[dim].
  • dims (ShapeLike | None) – For specifying multi-dimensional embeddings. The shape of the vectors in the embedding.

dim

property dim: Dim

The dimension of the vectors in the embedding (for a 1d embedding).

Raises: For 0- or >1-dimensional embeddings.

dims

property dims: Sequence[Dim]

The dimensions of the vectors in the embedding.

vocab_size

property vocab_size: Dim

The vocab size of the embedding.

Indices outside the range of [0, index_size) are illegal.

weight

weight: Tensor

Linear

class max.nn.module_v3.Linear(in_dim, out_dim, *, bias=True)

A unary linear transformation over an input tensor.

Linear is defined as f(x) = x @ W.T + B where W is the weight tensor and B is an optional bias tensor.

If W is not square then the transformation represents a dimensionality change. By convention the weight tensor is stored transposed.

from max.nn.module_v3 import Linear
from max.experimental.tensor import Tensor

model = Linear(5, 10)

assert dict(model.parameters) == {
    "weight": model.weight, "bias": model.bias
}

result = model(Tensor.ones([5]))
assert result.shape == [10]

Constructs a random linear transformation of the given dimensions.

Parameters:

  • in_dim (DimLike) – The dimensionality of the input to the transformation
  • out_dim (DimLike) – The dimensionality after applying the transformation to the input tensor of dim in_dim.
  • bias (Tensor | Literal[0]) – Whether to use a bias in the transformation.

bias

bias: Tensor | Literal[0]

The bias Tensor for the linear transformation (or 0 if bias is disabled).

in_dim

property in_dim: Dim

The input dimension for the transformation.

out_dim

property out_dim: Dim

The output dimension for the transformation.

weight

weight: Tensor

The weight Tensor for the linear transformation.

Module

class max.nn.module_v3.Module

The core unit of composition for modeling in MAX.

Informally, a Module is a container class. It can contain other Module instances, tensors (the Module’s “local parameters”) or other arbitrary Python data.

A Module also has a __call__() which applies that Module to some input. In the simplest case this is a function from one tensor to another tensor.

Formally modules form a tree, and subtrees of modules can be manipulated directly. A Module may also be thought of as a closure, where the parameters form the data of the closure and __call__() is the application of the closure.

Terminology:

  • A “child” of a Module is a sub-Module stored directly on that Module.
  • A “descendant” of a Module is one of its children, or one of their descendants.
  • A “parameter” is a tensor storing data on the Module or one of its descendants.
  • The “qualified path” of a descendant is a period-separated string of the names of the child module attributes which lead to that descendant module, for instance child.sub.last.
  • The “qualified path” of a parameter is the qualified path of the descendant directly holding that parameter, followed by a final path component for the attribute name of the tensor. For instance weight for a local parameter, or child.sub.last.weight for a descendant’s parameter.
from max.experimental.tensor import Tensor
from max.nn.module_v3 import Module, module_dataclass

@module_dataclass
class Linear(Module):
    weight: Tensor
    bias: Tensor | int = 0

    def __call__(self, x: Tensor) -> Tensor:
        return x @ self.weight.T + self.bias

linear = Linear(Tensor.zeros([5, 4]))
print(linear)
print(linear(Tensor.constant([1, 2, 3, 4])))

apply_to_local_parameters()

apply_to_local_parameters(f)

Applies a transformation to each local parameter tensor on the Module.

The transformation is applied in-place, updating the module’s values. It will not be applied to descendant’s parameters.

For example:

from max.driver import Accelerator
from max.nn.module_v3 import Linear

model = Linear(2, 3)
model.apply_to_parameters(lambda _, t: t.to(Accelerator()))

Parameters:

f (Callable[[str, Tensor], Tensor]) –

The transformation to apply to each local parameter. The transformation takes two arguments, a name and a tensor:

  • The name is the attribute name of the parameter on the module.
  • The tensor is the current value of that parameter.

The return value of this function is the new value that will replace the value at that name.

Return type:

None

apply_to_parameters()

apply_to_parameters(f)

Applies a transformation to all parameters in the module hierarchy.

This method traverses the module tree and applies the transformation function to each parameter in-place, updating both the current module’s parameters and all nested sub-module parameters. The transformation receives the parameter’s qualified name (dot-separated path) and current tensor value.

Transfer all parameters to accelerator:

from max.driver import Accelerator
from max.experimental.tensor import Tensor
from max.nn.module_v3 import Module, module_dataclass, Linear

@module_dataclass
class MLP(Module):
    fc1: Linear
    fc2: Linear

    def __call__(self, x: Tensor) -> Tensor:
        return self.fc2(self.fc1(x))

model = MLP(
    fc1=Linear(10, 20),
    fc2=Linear(20, 5)
)

model.apply_to_parameters(lambda name, t: t.to(Accelerator()))

Parameters:

f (Callable[[str, Tensor], Tensor]) –

Transformation function taking (name, tensor) and returning the transformed tensor. Parameters:

  • name (str): Qualified dot-separated path of the parameter (e.g., "fc1.weight", "encoder.layer2.bias")
  • tensor (Tensor): Current value of the parameter

Returns the new tensor value to replace the parameter.

Return type:

None

children

property children: Iterable[tuple[str, Module]]

Iterates over the direct child modules of the Module.

Yields:

(name, module) pairs, where name is the attribute name of the child on the module.

compile()

compile(*input_types)

Compiles the module to an optimized executable through graph tracing.

This method performs symbolic tracing of the module’s __call__ method to construct a MAX Graph, which is then compiled and optimized for efficient execution on CPU, GPU, or other accelerators.

The compilation process:

  1. Creates symbolic Tensor instances based on provided type specifications
  2. Executes __call__ with symbolic tensors to record operations
  3. Constructs a Graph representing the computation
  4. Includes all module parameters as weights in the graph
  5. Compiles and optimizes the graph for target hardware
  6. Returns an executable function with the same signature as __call__

The input type specifications must match the signature of __call__. Use positional arguments for positional parameters.

Basic compilation with fixed shapes:

from max.dtype import DType
from max.experimental.tensor import Tensor, TensorType, defaults
from max.nn.module_v3 import Module, module_dataclass

@module_dataclass
class Linear(Module):
    weight: Tensor
    bias: Tensor

    def __call__(self, x: Tensor) -> Tensor:
        return x @ self.weight.T + self.bias

linear = Linear(
    weight=Tensor.zeros([10, 5]),
    bias=Tensor.zeros([10])
)

# Compile with fixed input shape
_, device = defaults()
input_type = TensorType(DType.float32, [3, 5], device=device)
model = linear.compile(input_type)

# Execute compiled model
input_data = Tensor.ones([3, 5], dtype=DType.float32)
result = model(input_data)
print(result)

Parameters:

*input_types (Type[Any]) – Type specifications for each positional argument to __call__. Must match the number and order of arguments. Each should be a max.graph.Type (typically TensorType) describing the shape and dtype.

Returns:

Callable[…, Any] A compiled executable function with the same signature as __call__. This function runs the optimized graph and returns results with the same structure as __call__ (single Tensor or tuple of tensors).

Raises:

  • TypeError – If input types don’t match __call__ signature or if operations in __call__ cannot be traced.
  • RuntimeError – If graph construction fails due to incompatible operations or parameter access issues.

Return type:

Callable[[…], Any]

descendants

property descendants: Iterable[tuple[str, Module]]

Iterates over the Module’s descendant modules.

Yields:

(name, module) pairs, where name is the qualified path of the descendant with respect to the module.

load_state()

load_state(lookup)

Replaces each parameter in the module and its descendants.

The transformation is applied in-place, updating the module’s values and those of its descendants.

For example, if we have a model with two parameters, weight and bias, we can load the state of the model from a dictionary with the following code:

from max.experimental.tensor import Tensor
from max.nn.module_v3 import Linear

model = Linear(2, 3)
weights = {
    "weight": Tensor.zeros([3, 2]),
    "bias": Tensor.zeros([3]),
}
model.load_state(weights.__getitem__)

The lookup is defined as a function rather than a dictionary, allowing for functional remapping of names during this process to account for differences in common weight naming and storage conventions.

For instance, certain representations may not store weights as transposed, or may need to be quantized, or split out from a shared qkv block, or may just have slightly different names or paths.

This can also be used for instance to provide a default value for initializing LoRA weights.

Parameters:

lookup (Callable[[str], DLPackArray]) –

The lookup function for each parameter:

  • The argument to the lookup function is the qualified name of the parameter with respect to the module on which load_state() was called.
  • The return value of this function is the new value that will replace the value at that name in the module tree.

load_state_dict()

load_state_dict(state, strict=True)

Loads parameter values from a dictionary into the module hierarchy.

This method updates all module parameters in-place by loading values from the provided state dictionary. The dictionary maps qualified parameter names (dot-separated paths like "fc1.weight") to tensor values.

The strict mode (default) ensures all weights in the dictionary are actually used, catching errors from mismatched architectures or incorrect weight names.

For example, the following loads weights from a dictionary into a model:

from max.experimental.tensor import Tensor
from max.nn.module_v3 import Module, module_dataclass

@module_dataclass
class Linear(Module):
    weight: Tensor
    bias: Tensor

    def __call__(self, x: Tensor) -> Tensor:
        return x @ self.weight.T + self.bias

model = Linear(
    weight=Tensor.zeros([10, 5]),
    bias=Tensor.zeros([10])
)

# Load weights from dictionary
weights = {
    "weight": Tensor.zeros([10, 5]),
    "bias": Tensor.zeros([10]),
}
model.load_state(weights.__getitem__)

Parameters:

  • state (Mapping[str, DLPackArray]) – Dictionary mapping qualified parameter names to tensor values. Keys should match the names from Module.parameters property. Values should be DLPack-compatible arrays or Tensor objects.
  • strict (bool) – If True (default), verify that all keys in state are used (i.e., match actual parameters). If False, silently ignore extra keys that don’t match any parameters.

Raises:

  • ValueError – If strict=True and some weights in state don’t match any model parameters (indicates architecture mismatch or incorrect weight names).
  • KeyError – If a required parameter name in the model is missing from state (regardless of strict setting).

Return type:

None

local_parameters

property local_parameters: Iterable[tuple[str, Tensor]]

Iterates over the local parameters of the Module.

Yields:

(name, tensor) pairs, where name is the attribute name of the tensor on the module.

map_parameters()

map_parameters(f)

Creates a new Module with its parameters transformed by the function.

The transformation is functional rather than in-place. The module is deep-copied; its descendants are also replaced via the same transform without affecting the original module.

For example:

from max.driver import Accelerator
from max.nn.module_v3 import Linear

model = Linear(2, 3)
model_on_gpu = model.map_parameters(lambda _, t: t.to(Accelerator()))

Parameters:

f (Callable[[str, Tensor], Tensor]) –

The transformation to apply to each parameter. The transformation takes two arguments, a name and a tensor:

  • The name is the qualified name of the parameter with respect to the module on which map_parameters() was called.
  • The tensor is the current value of that parameter.

The return value of this function is the new value that will replace the value at that name in the module tree.

Returns:

A new module tree of the same type resulting from mapping the transformation over all model parameters.

Return type:

Self

parameters

property parameters: Iterable[tuple[str, Tensor]]

Iterates over all parameters in this module and its sub-modules.

This property performs a depth-first traversal of the module hierarchy, yielding each parameter tensor with its qualified name. The qualified name uses dot-notation to represent the module tree structure (e.g., "encoder.layer1.weight").

Parameters are yielded in depth-first order: first the current module’s direct parameters, then recursively each sub-module’s parameters.

Counting total parameters:

from max.experimental.tensor import Tensor
from max.nn.module_v3 import Module, module_dataclass
from max.nn.module_v3 import Linear

@module_dataclass
class MLP(Module):
    fc1: Linear
    fc2: Linear

    def __call__(self, x: Tensor) -> Tensor:
        return self.fc2(self.fc1(x))

model = MLP(
    fc1=Linear(10, 20),
    fc2=Linear(20, 5)
)

# Count parameters
total_params = sum(
    param.num_elements()
    for name, param in model.parameters
)
print(f"Total parameters: {total_params}")

Yields:

(name, parameter) tuples where name is the dot-separated qualified path of the parameter and parameter is the Tensor.

to()

to(device)

Updates the module’s parameters, transferring them to the specified device.

from max.driver import CPU
from max.nn.module_v3 import Linear

model = Linear(2, 3)
model.to(CPU())

Parameters:

device (Device) – The device to which all model parameters will be transferred.

Returns:

A reference to the model. The transfer is applied mutably; internal parameters are updated to be transferred to the specified device.

Return type:

Self

Sequential

class max.nn.module_v3.Sequential(*modules)

A Module subclass which holds a sequence of unary modules.

A unary Module is one whose __call__() method has the signature:

def __call__(self, x: Tensor) -> Tensor: ...

Sequential is itself a unary Module. Its __call__() method computes the result of applying each of its child modules in sequence to its input.

For example, this will apply a linear transformation up to a dimension of 10, apply a LayerNorm, and then apply a final linear transformation to reduce back to the input dimension of 5:

from max.experimental import Tensor
from max.nn.module_v3 import LayerNorm, Linear, Sequential

model = Sequential(
    Linear(5, 10),
    LayerNorm(10),
    Linear(10, 5),
)

result = model(Tensor.ones([5]))
assert result.shape == [5]

Constructs a sequential from a sequence of modules.

Following PyTorch, Sequential takes its inputs as a variadic rather than an iterable. Use the splat operator (*seq) to make a Sequential from an iterable.

For example:

from max.nn.module_v3 import Linear, Sequential

hidden_dims = [5, 10, 15, 20]

model = Sequential(*(
    Linear(in_dim, out_dim) for in_dim, out_dim in
    zip(hidden_dims, hidden_dims[1:])
))

Parameters:

modules (Module) – The sequence of contained modules in the order of desired application.

module_dataclass()

max.nn.module_v3.module_dataclass(cls=None, /, *, repr=False, **kwargs)

Converts a class into a MAX module with automatic parameter tracking.

This decorator enables a regular Python class to function as a Module, providing automatic discovery and registration of parameters (Tensor fields) and nested modules. The decorated class gains all capabilities of Module, including parameter iteration, graph compilation via Module.compile(), and hierarchical module composition.

The decorator applies Python’s @dataclass decorator internally while preserving Module’s specialized __repr__ method for better debugging experience when printing module structures.

Parameters:

  • cls (type[Module] | None) – The class to decorate. Must define a __call__ method. When None, returns a decorator function (supports using @module_dataclass with or without parentheses).
  • repr (bool) – If True, use dataclass’s default __repr__ instead of Module’s rich representation. Defaults to False.
  • **kwargs – Additional keyword arguments forwarded to Python’s @dataclass decorator (e.g., frozen, eq).

Returns:

The decorated class as a Module subclass with automatic parameter tracking and graph compilation capabilities. When cls is None, returns a decorator function.

Was this page helpful?