Skip to main content
Log in

Python module

conv

Conv1D

class max.pipelines.nn.conv.Conv1D(filter: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray, bias: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray | None = None, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1)

A 1D convolution over an input signal composed of several input planes.

bias

bias*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray | None* = None

dilation

dilation*: int* = 1

filter

filter*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray*

groups

groups*: int* = 1

padding

padding*: int* = 0

stride

stride*: int* = 1

Conv2D

class max.pipelines.nn.conv.Conv2D(filter: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray, bias: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray | None = None, stride: int | Tuple[int, int] = (1, 1), padding: int | Tuple[int, int, int, int] = (0, 0, 0, 0), dilation: int | Tuple[int, int] = (1, 1), groups: int = 1)

A 2D convolution over an input signal composed of several input planes.

bias

bias*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray | None* = None

dilation

dilation*: int | Tuple[int, int]* = (1, 1)

filter

filter*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray*

groups

groups*: int* = 1

padding

padding*: int | Tuple[int, int, int, int]* = (0, 0, 0, 0)

stride

stride*: int | Tuple[int, int]* = (1, 1)

Conv3D

class max.pipelines.nn.conv.Conv3D(filter: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray, bias: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray | None = None, stride: int | Tuple[int, int, int] = (1, 1, 1), padding: int | Tuple[int, int, int, int, int, int] = (0, 0, 0, 0, 0, 0), dilation: int | Tuple[int, int, int] = (1, 1, 1), groups: int = 1)

A 3D convolution over an input signal composed of several input planes.

bias

bias*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray | None* = None

dilation

dilation*: int | Tuple[int, int, int]* = (1, 1, 1)

filter

filter*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray*

groups

groups*: int* = 1

padding

padding*: int | Tuple[int, int, int, int, int, int]* = (0, 0, 0, 0, 0, 0)

stride

stride*: int | Tuple[int, int, int]* = (1, 1, 1)