Python module
pipeline
HF Token Generation Pipeline
KVCacheMixin
class max.pipelines.pipeline.KVCacheMixin(*args, **kwargs)
estimate_kv_cache_size()
abstract classmethod estimate_kv_cache_size(pipeline_config: PipelineConfig, available_cache_memory: int, devices: list[max.driver.driver.Device]) → int
Estimates the size of the kv cache in bytes.
load_kv_manager()
load_kv_manager(session: InferenceSession, available_cache_memory: int | None) → KVCacheManager
Provided a PipelineConfig and InferenceSession, loads the KV manager.
-
Parameters:
- session – Inference session to compile and init the KV cache.
- available_cache_memory – Amount of memory available to the KV cache, in bytes.
-
Returns:
one per input modality.
-
Return type:
Either a single KV cache manager or a tuple of KV cache managers
ModelInputs
class max.pipelines.pipeline.ModelInputs
Base class for model inputs. Use this class to encapsulate inputs for your model. You may store any number of dataclass fields
Example
>>> class ReplitInputs(ModelInputs):
... tokens: Tensor
... input_row_offsets: Tensor
...
... def __init__(self, tokens: Tensor, input_row_offsets: Tensor):
... self.tokens = tokens
... self.input_row_offsets = input_row_offsets
...
>>> # Create tensors
>>> tokens = Tensor.zeros((1, 2, 3), DType.int64)
>>> input_row_offsets = Tensor.zeros((1, 1, 1), DType.int64)
>>> # Initialize inputs
>>> inputs = ReplitInputs(tokens=tokens, input_row_offsets=input_row_offsets)
>>> # Access tensors
>>> list(inputs) == [tokens, input_row_offsets]
True
>>> class ReplitInputs(ModelInputs):
... tokens: Tensor
... input_row_offsets: Tensor
...
... def __init__(self, tokens: Tensor, input_row_offsets: Tensor):
... self.tokens = tokens
... self.input_row_offsets = input_row_offsets
...
>>> # Create tensors
>>> tokens = Tensor.zeros((1, 2, 3), DType.int64)
>>> input_row_offsets = Tensor.zeros((1, 1, 1), DType.int64)
>>> # Initialize inputs
>>> inputs = ReplitInputs(tokens=tokens, input_row_offsets=input_row_offsets)
>>> # Access tensors
>>> list(inputs) == [tokens, input_row_offsets]
True
ModelOutputs
class max.pipelines.pipeline.ModelOutputs(next_token_logits: 'Tensor | None' = None, logits: 'Tensor | None' = None)
logits
Logits for the entire token sequence.
next_token_logits
Logits for just the next token.
PipelineModel
class max.pipelines.pipeline.PipelineModel(pipeline_config: PipelineConfig, session: InferenceSession)
A pipeline model with setup, input preparation and execution methods.
calculate_max_seq_len()
abstract classmethod calculate_max_seq_len(pipeline_config: PipelineConfig) → int
Calculate the optimal max sequence length for the model. Models are expected to implement this method.
Example
>>> class MistralModel(PipelineModel):
... @classmethod
... def calculate_max_seq_len(cls, pipeline_config: PipelineConfig) -> int:
... try:
... return upper_bounded_default(
... upper_bound=pipeline_config.huggingface_config.max_seq_len,
... default=pipeline_config.max_length,
... )
... except ValueError as e:
... msg = (
... "Unable to infer max_length for Mistral, the provided "
... f"max_length ({pipeline_config.max_length}) exceeds the "
... f"model's max_seq_len "
... f"({pipeline_config.huggingface_config.max_seq_len})."
... )
... raise ValueError(msg) from e
...
>>> class MistralModel(PipelineModel):
... @classmethod
... def calculate_max_seq_len(cls, pipeline_config: PipelineConfig) -> int:
... try:
... return upper_bounded_default(
... upper_bound=pipeline_config.huggingface_config.max_seq_len,
... default=pipeline_config.max_length,
... )
... except ValueError as e:
... msg = (
... "Unable to infer max_length for Mistral, the provided "
... f"max_length ({pipeline_config.max_length}) exceeds the "
... f"model's max_seq_len "
... f"({pipeline_config.huggingface_config.max_seq_len})."
... )
... raise ValueError(msg) from e
...
compute_log_probabilities()
compute_log_probabilities(model_inputs: ModelInputs, model_outputs: ModelOutputs, next_tokens: Tensor, batch_top_n: list[int], batch_echo: list[bool]) → list[max.pipelines.response.LogProbabilities | None] | None
Optional method that can be overridden to compute log probabilities.
-
Parameters:
- model_inputs – Inputs to the model returned by prepare_*_token_inputs().
- model_outputs – Outputs returned by execute().
- next_tokens – Sampled tokens. Should have shape=[batch size]
- batch_top_n – Number of top log probabilities to return per input in the batch. For any element where top_n == 0, the LogProbabilities is skipped.
- batch_echo – Whether to include input tokens in the returned log probabilities.
-
Returns:
List of log probabilities.
estimate_weights_size()
classmethod estimate_weights_size(pipeline_config: PipelineConfig) → int
Calculates the estimated memory consumption of our model.
execute()
abstract execute(model_inputs: ModelInputs, kv_cache_inputs: Sequence[Tensor] | None = None) → ModelOutputs
Executes the graph with the given inputs.
-
Parameters:
- model_inputs – The model inputs to execute, containing tensors and any other required data for model execution.
- kv_cache_inputs – The kv cache inputs to execute, containing tensors and any other required data for model execution.
-
Returns:
ModelOutputs containing the pipeline’s output tensors.
This is an abstract method that must be implemented by concrete PipelineModels to define their specific execution logic.
get_kv_params()
abstract classmethod get_kv_params(pipeline_config: PipelineConfig) → KVCacheParams
Returns the KV cache params for the pipeline model.
get_num_layers()
abstract classmethod get_num_layers(pipeline_config: PipelineConfig) → int
Returns the number of layers for the pipeline model.
infer_optimal_batch_size()
classmethod infer_optimal_batch_size(pipeline_config: PipelineConfig, available_cache_memory: int) → int
Returns the estimated optimal batch size to run the model given current memory constraints.
prepare_initial_token_inputs()
abstract prepare_initial_token_inputs(context_batch: Sequence[T]) → ModelInputs
Prepares the initial inputs to be passed to .execute().
The inputs and functionality of this method can vary per model. For example, the model inputs could include:
- Encoded tensors
- A unique IDs for each tensor if this model uses a KV Cache manager.
This function would batch the encoded tensors, claim a slot in the kv cache if the ID hasn’t been seen before, and return the inputs and caches as a list of tensors.
prepare_next_token_inputs()
abstract prepare_next_token_inputs(next_tokens: Tensor, prev_model_inputs: ModelInputs) → ModelInputs
Prepares the secondary inputs to be passed to .execute().
While prepare_initial_token_inputs is responsible for managing the initial inputs. This function is responsible for updating the inputs, for each step in a multi-step execution pattern.
TextGenerationPipeline
class max.pipelines.pipeline.TextGenerationPipeline(pipeline_config: PipelineConfig, pipeline_model: Type[PipelineModel], eos_token_id: int)
Generalized token generator pipeline.
calculate_num_steps()
next_token()
next_token(batch: dict[str, T], num_steps: int) → list[dict[str, Any]]
Provided a batch, process batch inputs, execute the graph for num_steps in a multi-step scenario, then decode the tokens holistically and return the list of decoded tokens.
prepare_batch()
prepare_batch(batch: list[T], num_steps: int) → tuple[max.pipelines.pipeline.ModelInputs, Any, int]
release()
release(context: T) → None
Mark the context as complete, releasing the cache slot from the KV manager.
upper_bounded_default()
max.pipelines.pipeline.upper_bounded_default(upper_bound: int, default: int | None) → int
Given an upper bound and an optional default value, returns a final value that cannot exceed the upper bound.
-
Parameters:
- default – The default value to use, or None to use the upper bound.
- upper_bound – The upper bound to use.
-
Raises:
ValueError – If the provided default value exceeds the upper bound.
-
Returns:
The final value.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!