Mojo function
conv_transpose_shape
conv_transpose_shape[input_rank: Int, kernel_rank: Int, type: DType, strides_type: DType, dilations_type: DType, pads_type: DType, output_pads_type: DType, single_thread_blocking_override: Bool](input: NDBuffer[type, input_rank, origin], kernel: NDBuffer[type, kernel_rank, origin], strides: NDBuffer[strides_type, 1, origin], dilations: NDBuffer[dilations_type, 1, origin], pads: NDBuffer[pads_type, 1, origin], output_pads: NDBuffer[output_pads_type, 1, origin]) -> Index[input_rank]
Compute the output shape of a conv-transpose
operation, and assert the inputs are compatible.
Parameters:
- input_rank (
Int
): Rank of the input tensor. - kernel_rank (
Int
): Rank of the kernel tensor. - type (
DType
): Element type of the input and kernel tensor. - strides_type (
DType
): Element type of the strides tensor. - dilations_type (
DType
): Element type of the dilations tensor. - pads_type (
DType
): Element type of the pads tensor. - output_pads_type (
DType
): Element type of the output_pads tensor. - single_thread_blocking_override (
Bool
): If True, then the operation is run synchronously using a single thread.
Args:
- input (
NDBuffer[type, input_rank, origin]
): The input tensor. - kernel (
NDBuffer[type, kernel_rank, origin]
): The kernel tensor. - strides (
NDBuffer[strides_type, 1, origin]
): The strides tensor. - dilations (
NDBuffer[dilations_type, 1, origin]
): The dilations tensor. - pads (
NDBuffer[pads_type, 1, origin]
): The paddings tensor. - output_pads (
NDBuffer[output_pads_type, 1, origin]
): The output paddings tensor.
Returns:
The output shape.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!