Mojo function
fold
fold[dtype: DType, stride: Tuple[Int, Int], dilation: Tuple[Int, Int], padding: Tuple[Int, Int], target: StringSlice[StaticConstantOrigin]](input: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], output: LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], output_size: IndexList[2], kernel_size: IndexList[2], ctx: DeviceContextPtr)
Folds array of sliding local blocks into a single output tensor.
Parameters:
- dtype (
DType
): The data type for the input and output. - stride (
Tuple[Int, Int]
): Stride of the sliding blocks. - dilation (
Tuple[Int, Int]
): Dilation of the sliding blocks. - padding (
Tuple[Int, Int]
): 0-paddings to be added on both sides of the inputs. - target (
StringSlice[StaticConstantOrigin]
): The target architecture to compile for.
Args:
- input (
LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): Input tensor to fold, shape [N, C x kernel size, num_blocks]. - output (
LayoutTensor[dtype, layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment]
): Output tensor to write to, shape [N, C, H, W]. - output_size (
IndexList[2]
): Spatial shape of the output tensor (H, W). - kernel_size (
IndexList[2]
): Size of the sliding blocks. - ctx (
DeviceContextPtr
): DeviceContextPtr.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!