Skip to main content

Mojo struct

KVCacheMHAOperand

@register_passable(trivial) struct KVCacheMHAOperand[cache_t: KVCacheT]

An implementation for mo.opaque KVCacheT arguments to MHA kernels.

We can eventually remove this trait and just add it as a sub-trait in the KVCacheT type, but we need to solve some cyclic dependencies first.

Fields

  • cache (cache_t):

Implemented traits

AnyType, Copyable, ExplicitlyCopyable, MHAOperand, Movable, UnknownDestructibility

Aliases

dtype

alias dtype = get_witness(cache_t, kv_cache::types::KVCacheT, dtype)

Methods

__init__

__init__(cache: cache_t) -> Self

block_paged_ptr

block_paged_ptr[tile_size: Int](self, batch_idx: SIMD[uint32, 1], start_tok_idx: SIMD[uint32, 1], head_idx: SIMD[uint32, 1], head_dim_idx: SIMD[uint32, 1] = 0) -> UnsafePointer[SIMD[get_witness(cache_t, kv_cache::types::KVCacheT, dtype), 1]]

Returns:

UnsafePointer

cache_length

cache_length(self, batch_idx: Int) -> Int

Returns:

Int

max_context_length

max_context_length(self) -> SIMD[uint32, 1]

Returns:

SIMD

row_idx

row_idx(self, batch_idx: SIMD[uint32, 1], start_tok_idx: SIMD[uint32, 1]) -> SIMD[uint32, 1]

Returns the row idx when viewing the memory as a matrix.

Returns:

SIMD

col_idx

col_idx(self, head_idx: SIMD[uint32, 1]) -> SIMD[uint32, 1]

Returns the col idx when viewing the memory as a matrix.

Returns:

SIMD

create_tma_tile

create_tma_tile[tile_m: Int, tile_n: Int, swizzle_mode: TensorMapSwizzle, *, is_k_major: Bool](self, ctx: DeviceContext) -> TMATensorTile[get_witness(cache_t, kv_cache::types::KVCacheT, dtype), tile_layout_k_major[::DType,::Int,::Int,::TensorMapSwizzle]() if is_k_major else tile_layout_mn_major[::DType,::Int,::Int,::TensorMapSwizzle](), _tma_desc_tile_layout[::DType,::Int,::IndexList[$1, ::DType(), is_k_major]

Creates a TMA tile for efficient GPU memory transfers.

Returns:

TMATensorTile

Was this page helpful?