Mojo function
roi_align_nhwc
roi_align_nhwc[type: DType, output_layout: Layout, input_layout: Layout, roi_layout: Layout, //, aligned: Bool, mode: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string]("AVG")](output: LayoutTensor[type, output_layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], input: LayoutTensor[type, input_layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], rois: LayoutTensor[type, roi_layout, origin, address_space=address_space, element_layout=element_layout, layout_int_type=layout_int_type, linear_idx_type=linear_idx_type, masked=masked, alignment=alignment], output_height: Int, output_width: Int, in_spatial_scale: SIMD[dtype, 1], in_sampling_ratio: SIMD[dtype, 1])
Compute ROIAlign a batch of rois of shape [M, 5] where the first dim is the batch index, followed by region box coordinates (y0, x0) (y1, x1). For inputs of NHWC format. The output shape is [M, output_height, output_width, C].
Parameters:
- type (
DType
): Type of the input tensor. - output_layout (
Layout
): The output layout. - input_layout (
Layout
): The input layout. - roi_layout (
Layout
): The layout of the regions of interests (ROI). - aligned (
Bool
): If not true offset the ROIs by 0.5. - mode (
StringSlice[StaticConstantOrigin]
): The pooling mode "AVG" for average and "MAX" for max pooling.
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!