Mojo function
variance
variance(src: NDBuffer[dtype, 1, origin], mean_value: SIMD[dtype, 1], correction: Int = 1) -> SIMD[dtype, 1]
Given a mean, computes the variance of elements in a buffer.
The mean value is used to avoid a second pass over the data:
variance(x) = sum((x - E(x))^2) / (size - correction)
variance(x) = sum((x - E(x))^2) / (size - correction)
Args:
- src (
NDBuffer[dtype, 1, origin]
): The buffer. - mean_value (
SIMD[dtype, 1]
): The mean value of the buffer. - correction (
Int
): Normalize variance by size - correction.
Returns:
The variance value of the elements in a buffer.
variance[dtype: DType, input_fn_1d: fn[DType, Int](idx: Int) capturing -> SIMD[$0, $1]](length: Int, mean_value: SIMD[dtype, 1], correction: Int = 1) -> SIMD[dtype, 1]
variance(src: NDBuffer[dtype, 1, origin], correction: Int = 1) -> SIMD[dtype, 1]
Computes the variance value of the elements in a buffer.
variance(x) = sum((x - E(x))^2) / (size - correction)
variance(x) = sum((x - E(x))^2) / (size - correction)
Args:
- src (
NDBuffer[dtype, 1, origin]
): The buffer. - correction (
Int
): Normalize variance by size - correction (Default=1).
Returns:
The variance value of the elements in a buffer.
variance[dtype: DType, input_fn_1d: fn[DType, Int](idx: Int) capturing -> SIMD[$0, $1]](length: Int, correction: Int = 1) -> SIMD[dtype, 1]
Was this page helpful?
Thank you! We'll create more content like this.
Thank you for helping us improve!