Skip to main content

Mojo module

benchmark

Implements the benchmark module for runtime benchmarking.

You can import these APIs from the benchmark package. For example:

import benchmark
from time import sleep
import benchmark
from time import sleep

You can pass any fn as a parameter into benchmark.run[...](), it will return a Report where you can get the mean, duration, max, and more:

fn sleeper():
sleep(.01)

var report = benchmark.run[sleeper]()
print(report.mean())
fn sleeper():
sleep(.01)

var report = benchmark.run[sleeper]()
print(report.mean())
0.012256487394957985
0.012256487394957985

You can print a full report:

report.print()
report.print()
---------------------
Benchmark Report (s)
---------------------
Mean: 0.012265747899159664
Total: 1.459624
Iters: 119
Warmup Mean: 0.01251
Warmup Total: 0.025020000000000001
Warmup Iters: 2
Fastest Mean: 0.0121578
Slowest Mean: 0.012321428571428572

---------------------
Benchmark Report (s)
---------------------
Mean: 0.012265747899159664
Total: 1.459624
Iters: 119
Warmup Mean: 0.01251
Warmup Total: 0.025020000000000001
Warmup Iters: 2
Fastest Mean: 0.0121578
Slowest Mean: 0.012321428571428572

Or all the batch runs:

report.print_full()
report.print_full()
---------------------
Benchmark Report (s)
---------------------
Mean: 0.012368649122807017
Total: 1.410026
Iters: 114
Warmup Mean: 0.0116705
Warmup Total: 0.023341000000000001
Warmup Iters: 2
Fastest Mean: 0.012295586956521738
Slowest Mean: 0.012508099999999999

Batch: 1
Iterations: 20
Mean: 0.012508099999999999
Duration: 0.250162

Batch: 2
Iterations: 46
Mean: 0.012295586956521738
Duration: 0.56559700000000002

Batch: 3
Iterations: 48
Mean: 0.012380562499999999
Duration: 0.59426699999999999
---------------------
Benchmark Report (s)
---------------------
Mean: 0.012368649122807017
Total: 1.410026
Iters: 114
Warmup Mean: 0.0116705
Warmup Total: 0.023341000000000001
Warmup Iters: 2
Fastest Mean: 0.012295586956521738
Slowest Mean: 0.012508099999999999

Batch: 1
Iterations: 20
Mean: 0.012508099999999999
Duration: 0.250162

Batch: 2
Iterations: 46
Mean: 0.012295586956521738
Duration: 0.56559700000000002

Batch: 3
Iterations: 48
Mean: 0.012380562499999999
Duration: 0.59426699999999999

If you want to use a different time unit you can bring in the Unit and pass it in as an argument:

from benchmark import Unit

report.print(Unit.ms)
from benchmark import Unit

report.print(Unit.ms)
---------------------
Benchmark Report (ms)
---------------------
Mean: 0.012312411764705882
Total: 1.465177
Iters: 119
Warmup Mean: 0.012505499999999999
Warmup Total: 0.025010999999999999
Warmup Iters: 2
Fastest Mean: 0.012015649999999999
Slowest Mean: 0.012421204081632654
---------------------
Benchmark Report (ms)
---------------------
Mean: 0.012312411764705882
Total: 1.465177
Iters: 119
Warmup Mean: 0.012505499999999999
Warmup Total: 0.025010999999999999
Warmup Iters: 2
Fastest Mean: 0.012015649999999999
Slowest Mean: 0.012421204081632654

The unit's are just aliases for StringLiteral, so you can for example:

print(report.mean("ms"))
print(report.mean("ms"))
12.199145299145298
12.199145299145298

Benchmark.run takes four arguments to change the behaviour, to set warmup iterations to 5:

r = benchmark.run[sleeper](5)
r = benchmark.run[sleeper](5)
0.012004808080808081
0.012004808080808081

To set 1 warmup iteration, 2 max iterations, a min total time of 3 sec, and a max total time of 4 s:

r = benchmark.run[sleeper](1, 2, 3, 4)
r = benchmark.run[sleeper](1, 2, 3, 4)

Note that the min total time will take precedence over max iterations

Structs

  • Batch: A batch of benchmarks, the benchmark.run() function works out how many iterations to run in each batch based the how long the previous iterations took.
  • Report: Contains the average execution time, iterations, min and max of each batch.
  • Unit: Time Unit used by Benchmark Report.

Functions

  • run: Benchmarks the function passed in as a parameter.