Skip to main content
Log in

Mojo struct

String

struct String

Represents a mutable string.

Aliases

  • ASCII_LOWERCASE = "abcdefghijklmnopqrstuvwxyz":
  • ASCII_UPPERCASE = "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
  • ASCII_LETTERS = "abcdefghijklmnopqrstuvwxyz".__add__[__mlir_type.!kgen.string]("ABCDEFGHIJKLMNOPQRSTUVWXYZ"):
  • DIGITS = "0123456789":
  • HEX_DIGITS = "0123456789".__add__[__mlir_type.!kgen.string]("abcdef").__add__[__mlir_type.!kgen.string]("ABCDEF"):
  • OCT_DIGITS = "01234567":
  • PUNCTUATION = "!\22#$%&'()*+,-./:;<=>?@[\\]^_{|}~"`:
  • PRINTABLE = "0123456789".__add__[__mlir_type.!kgen.string]("abcdefghijklmnopqrstuvwxyz".__add__[__mlir_type.!kgen.string]("ABCDEFGHIJKLMNOPQRSTUVWXYZ")).__add__[__mlir_type.!kgen.string]("!\22#$%&'()*+,-./:;<=>?@[\\]^_{|}~").add[__mlir_type.!kgen.string](" \t\n\r\v\f")`:

Fields

  • has_nul_terminator (Bool): Whether the _buffer has a nul terminator at its end.

Implemented traits

AnyType, AsBytes, Boolable, CollectionElementNew, Comparable, Copyable, EqualityComparable, ExplicitlyCopyable, FloatableRaising, GreaterThanComparable, GreaterThanOrEqualComparable, Hashable, IntableRaising, KeyElement, LessThanComparable, LessThanOrEqualComparable, Movable, PathLike, PythonConvertible, Representable, Sized, Stringable, UnknownDestructibility, Writable, WritableCollectionElement, Writer, _CurlyEntryFormattable, _HashableWithHasher

Methods

__init__

__init__(out self)

Construct an empty string.

__init__(out self, *, capacity: Int)

Construct an empty string with a given capacity.

Args:

  • capacity (Int): The capacity of the string.

__init__[T: Stringable](out self, value: T)

Initialize from a type conforming to Stringable.

Parameters:

  • T (Stringable): The type conforming to Stringable.

Args:

  • value (T): The object to get the string representation of.

__init__[T: StringableRaising](out self, value: T)

Initialize from a type conforming to StringableRaising.

Parameters:

  • T (StringableRaising): The type conforming to Stringable.

Args:

  • value (T): The object to get the string representation of.

Raises:

If there is an error when computing the string representation of the type.

__init__(out self, bytes: Span[SIMD[uint8, 1], origin])

Construct a string by copying the data.

Args:

  • bytes (Span[SIMD[uint8, 1], origin]): The bytes to copy.

__init__[*Ts: Writable](out self, *args: *Ts, *, sep: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](""), end: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](""))

Construct a string by concatenating a sequence of Writable arguments.

Examples:

Construct a String from several Writable arguments:

var string = String(1, 2.0, "three", sep=", ")
print(string) # "1, 2.0, three"
var string = String(1, 2.0, "three", sep=", ")
print(string) # "1, 2.0, three"

.

Parameters:

  • *Ts (Writable): The types of the arguments to format. Each type must be satisfy Writable.

Args:

  • *args (*Ts): A sequence of Writable arguments.
  • sep (StringSlice[StaticConstantOrigin]): The separator used between elements.
  • end (StringSlice[StaticConstantOrigin]): The String to write after printing the elements.

__init__[*Ts: Writable](out self, args: VariadicPack[is_owned, origin, Writable, Ts], sep: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](""), end: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](""))

Construct a string by passing a variadic pack.

Examples:

fn variadic_pack_to_string[
*Ts: Writable,
](*args: *Ts) -> String:
return String(args)

string = variadic_pack_to_string(1, ", ", 2.0, ", ", "three")
fn variadic_pack_to_string[
*Ts: Writable,
](*args: *Ts) -> String:
return String(args)

string = variadic_pack_to_string(1, ", ", 2.0, ", ", "three")

.

Parameters:

  • *Ts (Writable): The types of the arguments to format. Each type must be satisfy Writable.

Args:

  • args (VariadicPack[is_owned, origin, Writable, Ts]): A VariadicPack of Writable arguments.
  • sep (StringSlice[StaticConstantOrigin]): The separator used between elements.
  • end (StringSlice[StaticConstantOrigin]): The String to write after printing the elements.

@implicit __init__(out self, literal: StringLiteral[value])

Constructs a String value given a constant string.

Args:

  • literal (StringLiteral[value]): The input constant string.

__init__(out self, *, unsafe_uninit_length: UInt)

Construct a String with the specified length, with uninitialized memory. This is unsafe, as it relies on the caller initializing the elements with unsafe operations, not assigning over the uninitialized data.

Args:

  • unsafe_uninit_length (UInt): The number of bytes to allocate.

__init__(out self, *, steal_ptr: UnsafePointer[SIMD[uint8, 1]], length: UInt)

Creates a string from the buffer. Note that the string now owns the buffer.

The buffer must be terminated with a null byte, which is not counted in the string length.

Args:

  • steal_ptr (UnsafePointer[SIMD[uint8, 1]]): The pointer to the buffer.
  • length (UInt): The length of the buffer, including the null terminator.

__bool__

__bool__(self) -> Bool

Checks if the string is not empty.

Returns:

True if the string length is greater than zero, and False otherwise.

__getitem__

__getitem__[I: Index](self, idx: I) -> Self

Gets the character at the specified position.

Parameters:

  • I (Index): A type that can be used as an index.

Args:

  • idx (I): The index value.

Returns:

A new string containing the character at the specified position.

__getitem__(self, span: Slice) -> Self

Gets the sequence of characters at the specified positions.

Args:

  • span (Slice): A slice that specifies positions of the new substring.

Returns:

A new string containing the string at the specified positions.

__lt__

__lt__(self, rhs: Self) -> Bool

Compare this String to the RHS using LT comparison.

Args:

  • rhs (Self): The other String to compare against.

Returns:

True if this String is strictly less than the RHS String and False otherwise.

__le__

__le__(self, rhs: Self) -> Bool

Compare this String to the RHS using LE comparison.

Args:

  • rhs (Self): The other String to compare against.

Returns:

True iff this String is less than or equal to the RHS String.

__eq__

__eq__(self, other: Self) -> Bool

Compares two Strings if they have the same values.

Args:

  • other (Self): The rhs of the operation.

Returns:

True if the Strings are equal and False otherwise.

__eq__(self, other: StringSlice[origin]) -> Bool

Compares two Strings if they have the same values.

Args:

  • other (StringSlice[origin]): The rhs of the operation.

Returns:

True if the Strings are equal and False otherwise.

__ne__

__ne__(self, other: Self) -> Bool

Compares two Strings if they do not have the same values.

Args:

  • other (Self): The rhs of the operation.

Returns:

True if the Strings are not equal and False otherwise.

__ne__(self, other: StringSlice[origin]) -> Bool

Compares two Strings if they have the same values.

Args:

  • other (StringSlice[origin]): The rhs of the operation.

Returns:

True if the Strings are equal and False otherwise.

__gt__

__gt__(self, rhs: Self) -> Bool

Compare this String to the RHS using GT comparison.

Args:

  • rhs (Self): The other String to compare against.

Returns:

True iff this String is strictly greater than the RHS String.

__ge__

__ge__(self, rhs: Self) -> Bool

Compare this String to the RHS using GE comparison.

Args:

  • rhs (Self): The other String to compare against.

Returns:

True iff this String is greater than or equal to the RHS String.

__contains__

__contains__(self, substr: StringSlice[origin]) -> Bool

Returns True if the substring is contained within the current string.

Args:

  • substr (StringSlice[origin]): The substring to check.

Returns:

True if the string contains the substring.

__add__

__add__(self, other: StringSlice[origin]) -> Self

Creates a string by appending a string slice at the end.

Args:

  • other (StringSlice[origin]): The string slice to append.

Returns:

The new constructed string.

__mul__

__mul__(self, n: Int) -> Self

Concatenates the string n times.

Args:

  • n (Int): The number of times to concatenate the string.

Returns:

The string concatenated n times.

__radd__

__radd__(self, other: StringSlice[origin]) -> Self

Creates a string by prepending another string slice to the start.

Args:

  • other (StringSlice[origin]): The string to prepend.

Returns:

The new constructed string.

__iadd__

__iadd__(mut self, other: StringSlice[origin])

Appends another string slice to this string.

Args:

  • other (StringSlice[origin]): The string to append.

copy

copy(self) -> Self

Explicitly copy the provided value.

Returns:

A copy of the value.

write_bytes

write_bytes(mut self, bytes: Span[SIMD[uint8, 1], origin])

Write a byte span to this String.

Args:

  • bytes (Span[SIMD[uint8, 1], origin]): The byte span to write to this String. Must NOT be null terminated.

write

write[*Ts: Writable](mut self, *args: *Ts)

Write a sequence of Writable arguments to the provided Writer.

Parameters:

  • *Ts (Writable): Types of the provided argument sequence.

Args:

  • *args (*Ts): Sequence of arguments to write to this Writer.

static write[*Ts: Writable](*args: *Ts, *, sep: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](""), end: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string]("")) -> Self

Construct a string by concatenating a sequence of Writable arguments.

This is used only when reusing the write_to method for __str__ in order to avoid an endless loop recalling the constructor:

fn write_to[W: Writer](self, mut writer: W):
writer.write_bytes(self.as_bytes())

fn __str__(self) -> String:
return String.write(self)
fn write_to[W: Writer](self, mut writer: W):
writer.write_bytes(self.as_bytes())

fn __str__(self) -> String:
return String.write(self)

Otherwise you can use the String constructor directly without calling the String.write static method:

var msg = String("my message", 42, 42.2, True)
var msg = String("my message", 42, 42.2, True)

.

Parameters:

  • *Ts (Writable): The types of the arguments to format. Each type must be satisfy Writable.

Args:

  • *args (*Ts): A sequence of Writable arguments.
  • sep (StringSlice[StaticConstantOrigin]): The separator used between elements.
  • end (StringSlice[StaticConstantOrigin]): The String to write after printing the elements.

Returns:

A string formed by formatting the argument sequence.

append_byte

append_byte(mut self, byte: SIMD[uint8, 1])

Append a byte to the string.

Args:

  • byte (SIMD[uint8, 1]): The byte to append.

__iter__

__iter__(self) -> CodepointSliceIter[self]

Iterate over the string, returning immutable references.

Returns:

An iterator of references to the string elements.

__reversed__

__reversed__(self) -> CodepointSliceIter[self, False]

Iterate backwards over the string, returning immutable references.

Returns:

A reversed iterator of references to the string elements.

__len__

__len__(self) -> Int

Get the string length of in bytes.

This function returns the number of bytes in the underlying UTF-8 representation of the string.

To get the number of Unicode codepoints in a string, use len(str.codepoints()).

Examples

Query the length of a string, in bytes and Unicode codepoints:

from testing import assert_equal

var s = String("ನಮಸ್ಕಾರ")

assert_equal(len(s), 21)
assert_equal(len(s.codepoints()), 7)
from testing import assert_equal

var s = String("ನಮಸ್ಕಾರ")

assert_equal(len(s), 21)
assert_equal(len(s.codepoints()), 7)

Strings containing only ASCII characters have the same byte and Unicode codepoint length:

from testing import assert_equal

var s = String("abc")

assert_equal(len(s), 3)
assert_equal(len(s.codepoints()), 3)
from testing import assert_equal

var s = String("abc")

assert_equal(len(s), 3)
assert_equal(len(s.codepoints()), 3)

.

Returns:

The string length in bytes.

__str__

__str__(self) -> Self

Gets the string itself.

This method ensures that you can pass a String to a method that takes a Stringable value.

Returns:

The string itself.

__repr__

__repr__(self) -> Self

Return a Mojo-compatible representation of the String instance.

Returns:

A new representation of the string.

__fspath__

__fspath__(self) -> Self

Return the file system path representation (just the string itself).

Returns:

The file system path representation as a string.

to_python_object

to_python_object(self) -> PythonObject

Convert this value to a PythonObject.

Returns:

A PythonObject representing the value.

write_to

write_to[W: Writer](self, mut writer: W)

Formats this string to the provided Writer.

Parameters:

  • W (Writer): A type conforming to the Writable trait.

Args:

  • writer (W): The object to write to.

join

join[*Ts: Writable](self, *elems: *Ts) -> Self

Joins string elements using the current string as a delimiter.

Parameters:

  • *Ts (Writable): The types of the elements.

Args:

  • *elems (*Ts): The input values.

Returns:

The joined string.

join[T: WritableCollectionElement, //, buffer_size: Int = 4096](self, elems: List[T, hint_trivial_type]) -> Self

Joins string elements using the current string as a delimiter. Defaults to writing to the stack if total bytes of elems is less than buffer_size, otherwise will allocate once to the heap and write directly into that. The buffer_size defaults to 4096 bytes to match the default page size on arm64 and x86-64, but you can increase this if you're joining a very large List of elements to write into the stack instead of the heap.

Parameters:

  • T (WritableCollectionElement): The types of the elements.
  • buffer_size (Int): The max size of the stack buffer.

Args:

  • elems (List[T, hint_trivial_type]): The input values.

Returns:

The joined string.

codepoints

codepoints(self) -> CodepointsIter[self]

Returns an iterator over the Codepoints encoded in this string slice.

Examples

Print the characters in a string:

from testing import assert_equal

var s = String("abc")
var iter = s.codepoints()
assert_equal(iter.__next__(), Codepoint.ord("a"))
assert_equal(iter.__next__(), Codepoint.ord("b"))
assert_equal(iter.__next__(), Codepoint.ord("c"))
assert_equal(iter.__has_next__(), False)
from testing import assert_equal

var s = String("abc")
var iter = s.codepoints()
assert_equal(iter.__next__(), Codepoint.ord("a"))
assert_equal(iter.__next__(), Codepoint.ord("b"))
assert_equal(iter.__next__(), Codepoint.ord("c"))
assert_equal(iter.__has_next__(), False)

codepoints() iterates over Unicode codepoints, and supports multibyte codepoints:

from testing import assert_equal

# A visual character composed of a combining sequence of 2 codepoints.
var s = String("á")
assert_equal(s.byte_length(), 3)

var iter = s.codepoints()
assert_equal(iter.__next__(), Codepoint.ord("a"))
# U+0301 Combining Acute Accent
assert_equal(iter.__next__().to_u32(), 0x0301)
assert_equal(iter.__has_next__(), False)
from testing import assert_equal

# A visual character composed of a combining sequence of 2 codepoints.
var s = String("á")
assert_equal(s.byte_length(), 3)

var iter = s.codepoints()
assert_equal(iter.__next__(), Codepoint.ord("a"))
# U+0301 Combining Acute Accent
assert_equal(iter.__next__().to_u32(), 0x0301)
assert_equal(iter.__has_next__(), False)

.

Returns:

An iterator type that returns successive Codepoint values stored in this string slice.

codepoint_slices

codepoint_slices(self) -> CodepointSliceIter[self]

Returns an iterator over single-character slices of this string.

Each returned slice points to a single Unicode codepoint encoded in the underlying UTF-8 representation of this string.

Examples

Iterate over the character slices in a string:

from testing import assert_equal, assert_true

var s = String("abc")
var iter = s.codepoint_slices()
assert_true(iter.__next__() == "a")
assert_true(iter.__next__() == "b")
assert_true(iter.__next__() == "c")
assert_equal(iter.__has_next__(), False)
from testing import assert_equal, assert_true

var s = String("abc")
var iter = s.codepoint_slices()
assert_true(iter.__next__() == "a")
assert_true(iter.__next__() == "b")
assert_true(iter.__next__() == "c")
assert_equal(iter.__has_next__(), False)

.

Returns:

An iterator of references to the string elements.

unsafe_ptr

unsafe_ptr(ref self) -> UnsafePointer[SIMD[uint8, 1], mut=self_is_mut, origin=self_is_origin]

Retrieves a pointer to the underlying memory.

Returns:

The pointer to the underlying memory.

unsafe_cstr_ptr

unsafe_cstr_ptr(mut self) -> UnsafePointer[SIMD[int8, 1], origin=self]

Retrieves a C-string-compatible pointer to the underlying memory.

The returned pointer is guaranteed to be null, or NUL terminated.

Returns:

The pointer to the underlying memory.

as_bytes

as_bytes(ref self) -> Span[SIMD[uint8, 1], self_is_origin]

Returns a contiguous slice of the bytes owned by this string.

Notes: This does not include the trailing null terminator.

Returns:

A contiguous slice pointing to the bytes owned by this string.

as_string_slice

as_string_slice(ref self) -> StringSlice[self_is_origin]

Returns a string slice of the data owned by this string.

Returns:

A string slice pointing to the data owned by this string.

byte_length

byte_length(self) -> Int

Get the string length in bytes.

Notes: This does not include the trailing null terminator in the count.

Returns:

The length of this string in bytes, excluding null terminator.

count

count(self, substr: StringSlice[origin]) -> Int

Return the number of non-overlapping occurrences of substring substr in the string.

If sub is empty, returns the number of empty strings between characters which is the length of the string plus one.

Args:

  • substr (StringSlice[origin]): The substring to count.

Returns:

The number of occurrences of substr.

find

find(self, substr: StringSlice[origin], start: Int = 0) -> Int

Finds the offset of the first occurrence of substr starting at start. If not found, returns -1.

Args:

  • substr (StringSlice[origin]): The substring to find.
  • start (Int): The offset from which to find.

Returns:

The offset of substr relative to the beginning of the string.

rfind

rfind(self, substr: StringSlice[origin], start: Int = 0) -> Int

Finds the offset of the last occurrence of substr starting at start. If not found, returns -1.

Args:

  • substr (StringSlice[origin]): The substring to find.
  • start (Int): The offset from which to find.

Returns:

The offset of substr relative to the beginning of the string.

isspace

isspace(self) -> Bool

Determines whether every character in the given String is a python whitespace String. This corresponds to Python's universal separators " \t\n\v\f\r\x1c\x1d\x1e\x85\u2028\u2029".

Returns:

True if the whole String is made up of whitespace characters listed above, otherwise False.

split

split(self, sep: StringSlice[origin], maxsplit: Int = -1) -> List[String]

Split the string by a separator.

Examples:

# Splitting a space
_ = String("hello world").split(" ") # ["hello", "world"]
# Splitting adjacent separators
_ = String("hello,,world").split(",") # ["hello", "", "world"]
# Splitting with maxsplit
_ = String("1,2,3").split(",", 1) # ['1', '2,3']
# Splitting a space
_ = String("hello world").split(" ") # ["hello", "world"]
# Splitting adjacent separators
_ = String("hello,,world").split(",") # ["hello", "", "world"]
# Splitting with maxsplit
_ = String("1,2,3").split(",", 1) # ['1', '2,3']

.

Args:

  • sep (StringSlice[origin]): The string to split on.
  • maxsplit (Int): The maximum amount of items to split from String. Defaults to unlimited.

Returns:

A List of Strings containing the input split by the separator.

Raises:

If the separator is empty.

split(self, sep: NoneType = NoneType(None), maxsplit: Int = -1) -> List[String]

Split the string by every Whitespace separator.

Examples:

# Splitting an empty string or filled with whitespaces
_ = String(" ").split() # []
_ = String("").split() # []

# Splitting a string with leading, trailing, and middle whitespaces
_ = String(" hello world ").split() # ["hello", "world"]
# Splitting adjacent universal newlines:
_ = String(
"hello \t\n\v\f\r\x1c\x1d\x1e\x85\u2028\u2029world"
).split() # ["hello", "world"]
# Splitting an empty string or filled with whitespaces
_ = String(" ").split() # []
_ = String("").split() # []

# Splitting a string with leading, trailing, and middle whitespaces
_ = String(" hello world ").split() # ["hello", "world"]
# Splitting adjacent universal newlines:
_ = String(
"hello \t\n\v\f\r\x1c\x1d\x1e\x85\u2028\u2029world"
).split() # ["hello", "world"]

.

Args:

  • sep (NoneType): None.
  • maxsplit (Int): The maximum amount of items to split from String. Defaults to unlimited.

Returns:

A List of Strings containing the input split by the separator.

splitlines

splitlines(self, keepends: Bool = False) -> List[String]

Split the string at line boundaries. This corresponds to Python's universal newlines: "\r\n" and "\t\n\v\f\r\x1c\x1d\x1e\x85\u2028\u2029".

Args:

  • keepends (Bool): If True, line breaks are kept in the resulting strings.

Returns:

A List of Strings containing the input split by line boundaries.

replace

replace(self, old: StringSlice[origin], new: StringSlice[origin]) -> Self

Return a copy of the string with all occurrences of substring old if replaced by new.

Args:

  • old (StringSlice[origin]): The substring to replace.
  • new (StringSlice[origin]): The substring to replace with.

Returns:

The string where all occurrences of old are replaced with new.

strip

strip(self, chars: StringSlice[origin]) -> StringSlice[self]

Return a copy of the string with leading and trailing characters removed.

Args:

  • chars (StringSlice[origin]): A set of characters to be removed. Defaults to whitespace.

Returns:

A copy of the string with no leading or trailing characters.

strip(self) -> StringSlice[self]

Return a copy of the string with leading and trailing whitespaces removed. This only takes ASCII whitespace into account: " \t\n\v\f\r\x1c\x1d\x1e".

Returns:

A copy of the string with no leading or trailing whitespaces.

rstrip

rstrip(self, chars: StringSlice[origin]) -> StringSlice[self]

Return a copy of the string with trailing characters removed.

Args:

  • chars (StringSlice[origin]): A set of characters to be removed. Defaults to whitespace.

Returns:

A copy of the string with no trailing characters.

rstrip(self) -> StringSlice[self]

Return a copy of the string with trailing whitespaces removed. This only takes ASCII whitespace into account: " \t\n\v\f\r\x1c\x1d\x1e".

Returns:

A copy of the string with no trailing whitespaces.

lstrip

lstrip(self, chars: StringSlice[origin]) -> StringSlice[self]

Return a copy of the string with leading characters removed.

Args:

  • chars (StringSlice[origin]): A set of characters to be removed. Defaults to whitespace.

Returns:

A copy of the string with no leading characters.

lstrip(self) -> StringSlice[self]

Return a copy of the string with leading whitespaces removed. This only takes ASCII whitespace into account: " \t\n\v\f\r\x1c\x1d\x1e".

Returns:

A copy of the string with no leading whitespaces.

__hash__

__hash__(self) -> UInt

Hash the underlying buffer using builtin hash.

Returns:

A 64-bit hash value. This value is not suitable for cryptographic uses. Its intended usage is for data structures. See the hash builtin documentation for more details.

__hash__[H: _Hasher](self, mut hasher: H)

Updates hasher with the underlying bytes.

Parameters:

  • H (_Hasher): The hasher type.

Args:

  • hasher (H): The hasher instance.

lower

lower(self) -> Self

Returns a copy of the string with all cased characters converted to lowercase.

Returns:

A new string where cased letters have been converted to lowercase.

upper

upper(self) -> Self

Returns a copy of the string with all cased characters converted to uppercase.

Returns:

A new string where cased letters have been converted to uppercase.

startswith

startswith(self, prefix: StringSlice[origin], start: Int = 0, end: Int = -1) -> Bool

Checks if the string starts with the specified prefix between start and end positions. Returns True if found and False otherwise.

Args:

  • prefix (StringSlice[origin]): The prefix to check.
  • start (Int): The start offset from which to check.
  • end (Int): The end offset from which to check.

Returns:

True if the self[start:end] is prefixed by the input prefix.

endswith

endswith(self, suffix: StringSlice[origin], start: Int = 0, end: Int = -1) -> Bool

Checks if the string end with the specified suffix between start and end positions. Returns True if found and False otherwise.

Args:

  • suffix (StringSlice[origin]): The suffix to check.
  • start (Int): The start offset from which to check.
  • end (Int): The end offset from which to check.

Returns:

True if the self[start:end] is suffixed by the input suffix.

removeprefix

removeprefix(self, prefix: StringSlice[origin], /) -> Self

Returns a new string with the prefix removed if it was present.

For example:

print(String('TestHook').removeprefix('Test'))
# 'Hook'
print(String('BaseTestCase').removeprefix('Test'))
# 'BaseTestCase'
print(String('TestHook').removeprefix('Test'))
# 'Hook'
print(String('BaseTestCase').removeprefix('Test'))
# 'BaseTestCase'

Args:

  • prefix (StringSlice[origin]): The prefix to remove from the string.

Returns:

string[len(prefix):] if the string starts with the prefix string, or a copy of the original string otherwise.

removesuffix

removesuffix(self, suffix: StringSlice[origin], /) -> Self

Returns a new string with the suffix removed if it was present.

For example:

print(String('TestHook').removesuffix('Hook'))
# 'Test'
print(String('BaseTestCase').removesuffix('Test'))
# 'BaseTestCase'
print(String('TestHook').removesuffix('Hook'))
# 'Test'
print(String('BaseTestCase').removesuffix('Test'))
# 'BaseTestCase'

Args:

  • suffix (StringSlice[origin]): The suffix to remove from the string.

Returns:

string[:-len(suffix)] if the string ends with the suffix string, or a copy of the original string otherwise.

__int__

__int__(self) -> Int

Parses the given string as a base-10 integer and returns that value. If the string cannot be parsed as an int, an error is raised.

Returns:

An integer value that represents the string, or otherwise raises.

__float__

__float__(self) -> SIMD[float64, 1]

Parses the string as a float point number and returns that value. If the string cannot be parsed as a float, an error is raised.

Returns:

A float value that represents the string, or otherwise raises.

format

format[*Ts: _CurlyEntryFormattable](self, *args: *Ts) -> Self

Format a template with *args.

Examples:

# Manual indexing:
print(String("{0} {1} {0}").format("Mojo", 1.125)) # Mojo 1.125 Mojo
# Automatic indexing:
print(String("{} {}").format(True, "hello world")) # True hello world
# Manual indexing:
print(String("{0} {1} {0}").format("Mojo", 1.125)) # Mojo 1.125 Mojo
# Automatic indexing:
print(String("{} {}").format(True, "hello world")) # True hello world

.

Parameters:

  • *Ts (_CurlyEntryFormattable): The types of substitution values that implement Representable and Stringable (to be changed and made more flexible).

Args:

  • *args (*Ts): The substitution values.

Returns:

The template with the given values substituted.

isdigit

isdigit(self) -> Bool

A string is a digit string if all characters in the string are digits and there is at least one character in the string.

Note that this currently only works with ASCII strings.

Returns:

True if all characters are digits and it's not empty else False.

isupper

isupper(self) -> Bool

Returns True if all cased characters in the string are uppercase and there is at least one cased character.

Returns:

True if all cased characters in the string are uppercase and there is at least one cased character, False otherwise.

islower

islower(self) -> Bool

Returns True if all cased characters in the string are lowercase and there is at least one cased character.

Returns:

True if all cased characters in the string are lowercase and there is at least one cased character, False otherwise.

isprintable

isprintable(self) -> Bool

Returns True if all characters in the string are ASCII printable.

Note that this currently only works with ASCII strings.

Returns:

True if all characters are printable else False.

rjust

rjust(self, width: Int, fillchar: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](" ")) -> Self

Returns the string right justified in a string of specified width.

Args:

  • width (Int): The width of the field containing the string.
  • fillchar (StringSlice[StaticConstantOrigin]): Specifies the padding character.

Returns:

Returns right justified string, or self if width is not bigger than self length.

ljust

ljust(self, width: Int, fillchar: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](" ")) -> Self

Returns the string left justified in a string of specified width.

Args:

  • width (Int): The width of the field containing the string.
  • fillchar (StringSlice[StaticConstantOrigin]): Specifies the padding character.

Returns:

Returns left justified string, or self if width is not bigger than self length.

center

center(self, width: Int, fillchar: StringSlice[StaticConstantOrigin] = __init__[__mlir_type.!kgen.string](" ")) -> Self

Returns the string center justified in a string of specified width.

Args:

  • width (Int): The width of the field containing the string.
  • fillchar (StringSlice[StaticConstantOrigin]): Specifies the padding character.

Returns:

Returns center justified string, or self if width is not bigger than self length.

reserve

reserve(mut self, new_capacity: Int)

Reserves the requested capacity.

Notes: If the current capacity is greater or equal, this is a no-op. Otherwise, the storage is reallocated and the data is moved.

Args:

  • new_capacity (Int): The new capacity in stored bytes.