Skip to main content
Log in

Python module

rms_norm

Normalization layer.

DistributedRMSNorm

class max.nn.norm.rms_norm.DistributedRMSNorm(*args, devices: list[max.graph.type.DeviceRef], **kwargs)

RMSNorm

class max.nn.norm.rms_norm.RMSNorm(dim: int, eps: float = 1e-06, weight_offset: float = 0.0)

Computes the Root Mean Square normalization on inputs.

  • Parameters:

    • dim – Size of last dimension of the expected input.
    • eps – Value added to denominator for numerical stability.
    • weight_offset – Constant offset added to the learned weights at runtime. For Gemma-style RMSNorm, this should be set to 1.0.

RMSNormV1

class max.nn.norm.rms_norm.RMSNormV1(weight: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray, eps: float = 1e-06, weight_offset: float = 0.0)

Computes the Root Mean Square normalization on inputs.

Deprecated: Use RMSNorm instead.

eps

eps*: float* = 1e-06

weight

weight*: Value | BufferValue | TensorValue | Shape | Dim | int | float | integer | floating | ndarray*

weight_offset

weight_offset*: float* = 0.0