Skip to main content
Log in

Python module

naive_cache

Naive KV cache for the Transformer.

NaiveKVCacheManager

class max.pipelines.kv_cache.naive_cache.NaiveKVCacheManager(params: KVCacheParams, max_cache_batch_size: int, max_seq_len: int, num_layers: int, devices: List[Device], session: InferenceSession)

cache_shape

property cache_shape*: list[int]*

estimated_memory_size()

classmethod estimated_memory_size(params: KVCacheParams, max_cache_batch_size: int, max_seq_len: int, num_layers: int, available_cache_memory: int, devices: List[Device]) → int

Returns the estimated total memory usage of the kv cache.

fetch()

fetch(seq_ids_and_prompts: dict[int, numpy.ndarray], num_steps: int = 1) → List[tuple[max.driver.tensor.Tensor, max.driver.tensor.Tensor, max.driver.tensor.Tensor, max.driver.tensor.Tensor]]

input_symbols()

input_symbols() → List[tuple[max.graph.type.BufferType, max.graph.type.BufferType, max.graph.type.TensorType, max.graph.type.TensorType]]